

MIC-C90-EDB elevator connector

Designation	Item number
MIC-C90-EDB elevator connector	2149279

Corrosion protection:

Hot dipped galvanized as per DIN EN ISO 1462, thickness 55 micr ons

Weight:

9434g incl. accessories

Submittal text:

Hot-dipped galvanised Hilti elevator connector, used primarily to connect an MI or MIQ girder to either a concrete wall or another girder. The baseplate of the connector is fastened to concrete through anchor holes with Hilti HST3 anchors or similar, and with MIA-OH bolts to another girder, secured with two self-locking nuts. Sold as a pair of connectors, one with a single hole and the other with an oblong hole, through which the connector is fastened to the girder with MIA-OH through-bolts. Material weight 9.43kg including all items.

Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S355 JR	$F_y = 355 \frac{N}{mm^2}$	$F_{u} = 490 \frac{N}{mm^{2}}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
DIN EN 10025				

Instruction For Use:

Installation Technical Manual - Technical Data - MIQ system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 113

MIC-C90-EDB elevator connector

Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 16.0
- Microsoft Excel
- Analytic calculation

Environmental conditions:

- static loads
- no fatigue loads

Simplified drawing:

Installation Technical Manual - Technical Data - MIQ system

MIQ System

MIC-C90-EDB elevator connector

Possible loading cases		
On concrete	On steel	

Loading case: On concrete	Combinations covered by loading case
BOM: Base material connector incl. all connectivity material 1x MIC-C90-EDB elevator connector 2149279	Connector used for fixing MIQ girder, perpendicularly to concrete usually as divider beam (wall to wall) in elevator shaft

Installation Technical Manual - Technical Data - MIQ system

MIQ System

MIC-C90-EDB elevator connector

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. MIC-C90-EDB Slotted connector incl. bolt, base plate and weld

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
2.10	2.10	5.00**	5.00**	5.00	5.00
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
0.07	0.07	0.00	0.00	0.00	0.00

**Values are provided for 1mm local deflection on connector Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \le 1$$

Note: The welds and the one hand screw are modelled appropriately in the FE- calculation and are therefore included in the overall resistance for connector given above.

2. MIC-C90-EDB Connector with hole incl. bolt, plate and welds

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
10.60	10.60	5.00**	5.00**	5.00	5.00
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
0.07	0.07	0.00	0.00	0.00	0.00

**Values are provided for 1mm local deflection on connector Interaction:

 $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$

Note: The welds and the one hand screw are modelled appropriately in the FE- calculation and are therefore included in the overall resistance for connector given above

Installation Technical Manual - Technical Data - MIQ system

2/2

MIQ System

MIC-C90-EDB elevator connector

Possible loading cases		
On concrete	On steel	

Loading case: On steel	Combinations covered by loading case
BOM:Base material connector incl. all connectivity material1x MIC-C90-EDB elevator connector2149279Connection to vertical MIQ girder2x MIQM-M12 wing nut21202752x M12x30-F hex. Head screw284387	Connector used for fixing MIQ girder, perpendicularly to other MIQ vertical girder usually as divider beam (wall to wall) in elevator shaft

Installation Technical Manual - Technical Data - MIQ system