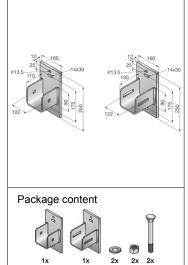


MIC-C120-EDB elevator connector

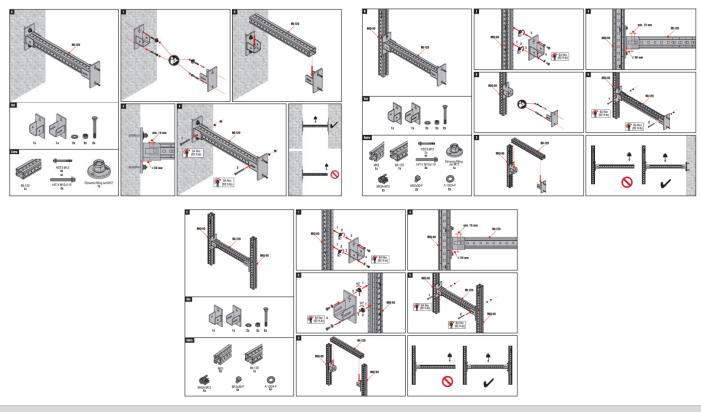
Designation	Item number
MIC-C120-EDB elevator connector	2149420

Corrosion protection:


Hot dipped galvanized as per DIN EN ISO 1462, thickness 55 micr ons

Weight:

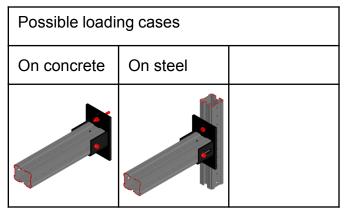
11043g incl. accessories


Submittal text:

Hot-dipped galvanised Hilti elevator connector, used primarily to connect an MI or MIQ girder to either a concrete wall or another girder. The baseplate of the connector is fastened to concrete through anchor holes with Hilti HST3 anchors or similar, and with MIA-OH bolts to another girder, secured with two self-locking nuts. Sold as a pair of connectors, one with a single hole and the other with an oblong hole, through which the connector is fastened to the girder with MIA-OH through-bolts. Material weight 11.04kg including all items.

Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S355 JR	$F_y = 355 \frac{N}{mm^2}$	$F_{u} = 490 \frac{N}{mm^{2}}$	E = 210000 $\frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
DIN EN 10025				

Instruction For Use:



Installation Technical Manual - Technical Data - MIQ system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 119

MIC-C120-EDB elevator connector

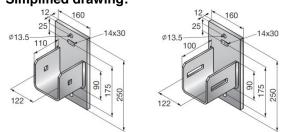
Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008

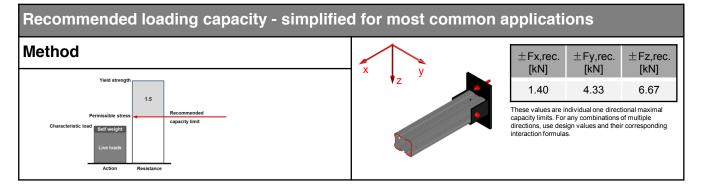

Software:

- Ansys 16.0
- Microsoft Excel
- Analytic calculation

Environmental conditions:

- static loads
- no fatigue loads

Simplified drawing:



MIC-C120-EDB elevator connector

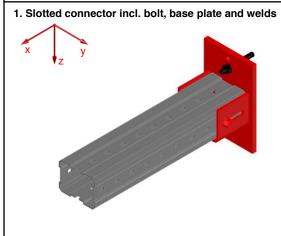
Possible loading cases				
On concrete On steel				

Loading case: On concrete	Combinations covered by loading case
BOM: Base material connector incl. all connectivity material MIC-C120-EDB elevator connector 2149420	Connector used for fixing MIQ girder, perpendicularly to concrete usually as divider beam (wall to wall) in elevator shaft

Design loading capacity - 3D	1/2
Method	
Ved strength and capacity limit capa	
Limiting components of capacity evaluated	in following tables:
1. Slotted connector incl. bolt, base plate and welds	2. Connector with hole incl. bolt, base plate and welds

MIC-C120-EDB elevator connector

Conditions of the loading capacity tables:


- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
2.10	2.10	6.50**	6.50**	10.00	10.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.10	0.10	0.00	0.00	0.00	0.00

**Values are provided for 1mm local deflection on connector Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

Note: The welds and the one hand screw are modelled appropriately in the FE- calculation and are therefore included in the overall resistance for connector given above

2. Connector with hole incl. bolt, base plate and welds

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
14.00	14.00	6.50**	6.50**	10.00	10.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.10	0.10	0.00	0.00	0.00	0.00

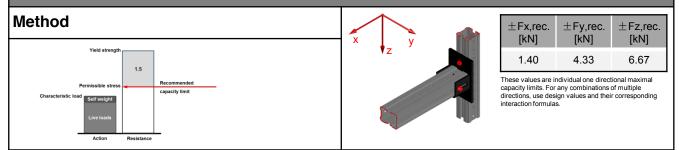
**Values are provided for 1mm local deflection on connector Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

Note: The welds and the one hand screw are modelled appropriately in the FE- calculation and are therefore included in the overall resistance for connector given above

Installation Technical Manual - Technical Data - MIQ system

2/2

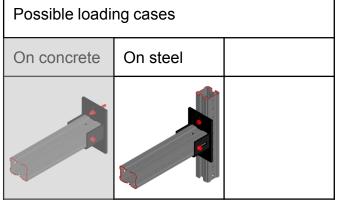


MIC-C120-EDB elevator connector

Possible loading cases				
On concrete	On steel			

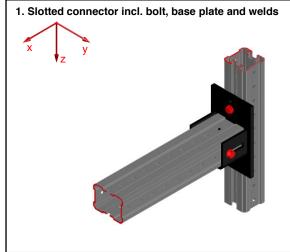
Loading case: On steel	Combinations covered by loading case	
BOM:Base material connector incl. all connectivity materialMIC-C120-EDB elevator connector2149420Connection to vertical MIQ girder2x MIQM-M12 wing nut21202752x M12x30-F hex. Head screw284387	Connector used for fixing MI-120 girder, perpendicularly to other MIQ vertical girder usually as divider beam (wall to wall) in elevator shaft	

Recommended loading capacity - simplified for most common applications


Design loading capacity - 3D	1/2
Method	
Vid diterry Design load Capacity limit Design load 1.5 Line load Action Peerdance	
Limiting components of capacity evaluated	in following tables:
1. Slotted connector incl. bolt, base plate and welds	2. Connector with hole incl. bolt, base plate and welds

MIC-C120-EDB elevator connector

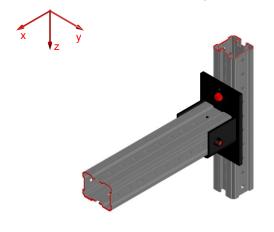
Conditions of the loading capacity tables:


- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
2.10	2.10	5.00**	5.00**	8.50	8.50
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.10	0.10	0.00	0.00	0.00	0.00

**Values are provided for 1mm local deflection on connector Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

Note: The welds and the one hand screw are modelled appropriately in the FE- calculation and are therefore included in the overall resistance for connector given above

2. Connector with hole incl. bolt, base plate and welds

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
10.60	10.600	5.00**	5.00**	8.50	8.50
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.10	0.10	0.00	0.00	0.00	0.00

Values are provided for 1mm local deflection on connector **Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \le 1$$

Note: The welds and the one hand screw are modelled appropriately in the FE- calculation and are therefore included in the overall resistance for connector given above