

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-22/0001 of 8 June 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

fischer injection system FIS EM Plus

Post-installed reinforcing bar (rebar) connections with improved bond-splitting behaviour

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

19 pages including 3 annexes which form an integral part of this assessment

EAD 332402-00-0601-v01 Edition 10/2020

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-22/0001 English translation prepared by DIBt

Page 2 of 19 | 8 June 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 19 | 8 June 2022

European Technical Assessment ETA-22/0001 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The subject of this European technical assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the fischer injection system FIS EM Plus in accordance with the regulations for reinforced concrete construction.

Reinforcing bars with a diameter ϕ from 8 to 40 mm according to Annex A and the injection mortar FIS EM Plus are used for the post-installed rebar connection. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between embedded reinforcing bar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the rebar connection is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connections of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1 to C 3

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 332402-00-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

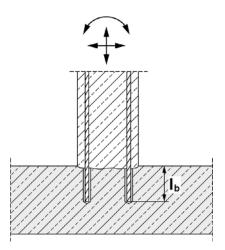
European Technical Assessment ETA-22/0001 English translation prepared by DIBt

Page 4 of 19 | 8 June 2022

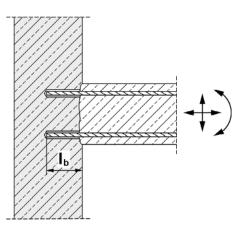
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 8 June 2022 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Lange

Installation conditions and application examples reinforcing bars


Figure A1.1:

Column / wall to foundation / slab

Figure A1.2:

Slab / beam to wall or beam to column

Figures not to scale

fischer injection system FIS EM Plus

Product description

Installation conditions and application examples reinforcing bars

Annex A 1

Overview system components	
Injection cartridge (shuttle cartridge) FIS EM Plus with sealing cap; Sizes: 390 ml, 585	ml, 1100 ml, 1500 ml
Imprint: fischer FIS EM Plus, processing notes, shelf-life, piston trav scale (optional), curing times and processing times (depending on temperature), hazard code, size, volume	
Static mixer FIS MR Plus for injection cartridges 390 ml	
Static mixer FIS UMR for injection cartridges ≥ 585 ml	
Injection adapter and extension tube Ø 9 for static mixer FIS MR Plus; Injection adapter and extension tube Ø 9 or Ø 15 for static mixer FIS UMR	
Reinforcing bar (rebar) Sizes: \$\$, \$10, \$12, \$14, \$16, \$20, \$22, \$24, \$25, \$26, \$28, \$30, \$ marking s	etting depth
fischer cleaning brush	
Compressed-air cleaning tool with fischer compressed-air nozzle	
fischer injection system FIS EM Plus	Figures not to scale
Product description Overview system components: injection mortar, static mixer, injection adapter, reinforcing bar, cleaning tools	Annex A 2

Properties of reinforcing bars	; (reba	ar)										
	-	-										
Figure A3.1:												
The minimum value of related rib	area f-		accordi	na to EN	1002-1-	1.2001+	۵C·2010					
 The maximum outer rebar diame 				•	1992-1-	1.20041	AO.2010					
The newsinel dismeter of the	horwit	+ la "		h /h < 0								
 The nominal diameter of the (\$\phi\$: Nominal diameter of the 												
0 (1					,							
Table A3.1: Installation cond	itions	fc	or reba	rs								
Nominal diameter of the bar	ф		8 ¹⁾	10 ¹⁾	12 ¹⁾	14	16	20	22	24		
Nominal drill hole diameter d ₀	-		10 12	12 14	14 16	18	20	25	30	30		
Drill hole depth h ₀						h ₀	≥ I _b					
Effective embedment depth $I_b = I$, [mn	n]			acc	. to statio	c calcula	tion				
Minimum thickness of concrete				+ 30			In	+ 2d ₀	+ 2do			
member			(2	≥ 100)			15	Edg				
Nominal diameter of the bar		φ	25 ¹⁾	26	28	30	32	34	36	40		
Nominal drill hole diameter d ₀			30 35	35	35	40	40	40	45	55		
Drill hole depth h ₀		_				h ₀	≥ I _b					
Effective embedment depth $I_b = I$, [mn	n]			acc	. to statio	c calcula	tion				
Minimum thickness of concrete h _{min}						l _b +	2d ₀					
¹⁾ Both drill hole diameters can be use	d											
Table A3.2: Materials of reba	rs											
		<u> </u>			I							
Designation				g bar (re								
Reinforcing bar					rods clas o NDP or			0 1 1/NIA				
EN 1992-1-1:2004+AC:2010, Annex C			$= f_{tk} = k \cdot$	•			LIN 1992	// 1/11/74				
		un	in it	- yr								
.												
fischer injection system FIS EM P	us											
Product description Properties and materials of reinforcing	bars (re	eba	ar)					4	Annex A	3		

Specifications	of intended u	se part 1						
Table B1.1:	Overview use	and performance categories						
Fastenings subject	t to	FIS EI	M Plus with …					
		Reinfor	rcing bar					
Hammer drilling with standard drill bit	B#####################################	all sizes						
Hammer drilling with hollow drill bit (fischer "FHD", Heller "Duster Expert"; Bosch "Speed Clean"; Hilti "TE-CD, TE-YD", DreBo "D-Plus", DreBo "D-Max")	Ī	Nominal drill bit 12 mm to						
Use category	I1 dry or wet concrete	all s	sizes					
	l2 water filled hole	all sizes (not permitted in combir	nation with working life 100 years)					
Characteristic resistance under	in uncracked concrete	all sizes	Tables: C1.1 C1.2					
static and quasi static loading,	in cracked concrete	all sizes	C2.1 C3.1					
Seismic performan category	ice C1 C2	-	1)					
Installation directio	n	D3 (downward and horizontal	and upwards (e.g. overhead))					
Installation tempera	ature	T _{i,min} = -5 °C to	o T _{i,max} = +40 °C					
Service	Temperature range I	-400.00 ± 600.00	short term temperature +60 °C; long term temperature +35 °C)					
temperature	Temperature range II		short term temperature +72 °C; long term temperature +50 °C)					
¹⁾ No performanc	ce assessed							
fischer injection	system FIS E	M Plus						
Intended Use Specifications par	t 1		Annex B 1					
L			1					

Specifications of intended use part 2

Anchorages subject to:

Static and quasi-static loading: reinforcing bar (rebar) size 8 mm to 40 mm

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016
- Maximum chloride content of 0,40 % (CL 0.40) related to the cement content according to EN 206:2013+A1:2016
- Non-carbonated concrete

Note: In case of a carbonated surface of the existing concrete structure, the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of ϕ + 60 mm prior to the installation of the new rebar. The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1 :2004+AC:2010. The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Design:

- Fastenings are designed under the responsibility of an engineer experienced in fastenings and concrete work.
- · Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design under static and quasi static loading in accordance with EOTA Technical Report TR 069 October 2019.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.
- The shear force must be transferred via the rough joint; the subsequent reinforcement must not be applied for shear force transfer.

Installation:

- Rebar installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).
- Rebars in overhead installation have to be fixed in their position until the injection mortar is cured.

fischer injection system FIS EM Plus

Intended Use Specifications part 2 Annex B 2

Table B3.1:Minimum concrete cover c_{min} ¹⁾ depending on the drilling method and the
drilling tolerance ²⁾

	9			
	nominal		Minimum concrete cove	Pr C _{min}
Drilling method	diameter of reinforcing bar	Without drilling aid [mm]		drilling aid [mm]
Hammer drilling with	< 25	30 mm + 0,06 l _b ≥ 2 φ	30 mm + 0,02 l _b ≥ 2 ¢	
standard drill bit	≥ 25	40 mm + 0,06 l _b ≥ 2 φ	40 mm + 0,02 l _b ≥ 2 φ	
Hammer drilling with hollow drill bit (fischer "FHD", Heller "Duster Expert"; Bosch	< 25	30 mm + 0,06 l _b ≥ 2 φ	30 mm + 0,02 l _b ≥ 2 φ	Drilling aid
"Speed Clean"; Hilti "TE-CD, TE-YD")	≥ 25	40 mm + 0,06 l _b ≥ 2 φ	40 mm + 0,02 l _b ≥ 2 ¢	

¹⁾Note: The minimum concrete cover as specified in EN 1992-1-1:2004+AC:2010 must be observed. ²⁾Minimum clear spacing is a = max (40 mm; $4 \cdot \phi$)

Table B3.2:Dispensers and cartridge sizes corresponding to
maximum embedment depth Ib,max

			1				
reinforcing bars (rebar)	Manual dispenser	Pneumatic or cordless	Pneumatic or cordless				
		dispenser (small)	dispenser (large)				
	Cartridge size	Cartridge size	Cartridge size				
	390 ml, 585 ml	390 ml, 585 ml	1500 ml				
φ [mm]	l _{b,max} [mm]	l _{b,max} [mm]	l _{b,max} [mm]				
8		1000					
10		1000					
12	1000	1200	1800				
14		1200	1800				
16		1500					
20	700	1300	1				
22 / 24 / 25	700	1000					
26 / 28	500	700					
30 / 32 / 34			2000				
36 / 40	no performance assessed	500					

fischer injection system FIS EM Plus

Intended Use	Annex B 3
Minimum concrete cover;	
dispenser and cartridge sizes corresponding to maximum embedment depth	

Nominal dr diameter	ill hole		do		10	12	14	16	18	20	24	25	28	30	35	40
Drill hole depth hoby F		by Fl	S MR Plus	[mm]	≤(90	≤120	≤140	≤150	≤160	≤190		1	≤210		
using	opurno		SUMR		-	-	≤90	≤160	≤180	≤190	≤2	20		≤2	250	
Table B4	.2:	Work	king times	twork	and c	uring	g time	es t _{cu}	re							
•				aximun	n proce	essing	time 1)			Min	imum	n curing	time ²	2)	
anchoring base [°C]					t _{wor}	k							t _{cure}			
-5 to	0				240 m	in ³⁾							200 h			
>0 to	5				150 m	in ³⁾							90 h			
>5 to	10				120 m								40 h			
>10 to	20				30 m								18 h			
>20 to	30				14 m								10 h			
>30 to	40				7 mir								5 h			
²⁾ For wet ³⁾ If the te	um time t concre emperat	ete the ture in	he beginning curing time the concrete the concrete	must b falls b	e inject e dout elow 1	tion to bled 0°C th	ne cart	ridge l	nas to	be wa	rmed ι	ip to	and pos +15°C.		-	
²⁾ For wet ³⁾ If the te	um time t concre emperat emperat	ete the ture in ture in	curing time the concrete	must b falls b excee	e inject e dout elow 1 eds 30	tion to bled 0°C th °C the	ne cart e cartri	ridge l dge ha	nas to as to b	be wa e cool	rmed u ed dov	ıp to /n to	and pos +15°C. +15°C	up to 2	20°C	r
 ²⁾ For wet ³⁾ If the te ⁴⁾ If the te 	um time t concre emperat emperat	ete the ture in ture in Insta	curing time the concrete the concrete	must b falls b excee	e inject e dout elow 1 eds 30 Irilling	tion to bled 0°C the °C the and	ne cart e cartri	ridge l dge ha ing th	nas to as to b	be wa e cool e hole	rmed ા ed dow e and	ip to /n to injec	and pos +15°C. +15°C tion of	up to 2 the r Injecti	20°C mortai	r
 ²⁾ For wet ³⁾ If the te ⁴⁾ If the te Table B4 	um time t concre emperat emperat	ete the ture in ture in Insta	curing time the concrete the concrete	must b falls b e excee s for c	e inject be dout below 1 eds 30 Irilling Dri Diam	tion to bled 0°C the °C the and	ne cart e cartri cleani nd clea f S	ridge l dge ha ing th	nas to as to b e bore rush	be wa e coole e hole Diam cle	rmed u ed dow e and neter o aning	ip to /n to injec	and pos +15°C. +15°C tion of ameter	up to 2 the r Injecti	20°C mortai	tion
²⁾ For wet ³⁾ If the te ⁴⁾ If the te Table B4 reinforcing	um time t concre emperat emperat	ete the ture in ture in Insta	curing time the concrete the concrete llation tools Nominal dr	ill bit	e inject e doub eelow 1 eds 30 Irilling Dri Diam cuttin	tion to bled 0°C th °C the and lling a	ne cart e cartri cleani nd clea f S	ridge H dge ha ing th aning Steel bi	nas to as to b e bore rush ter	be wa e coole e hole Diam cle no:	rmed u ed dow e and	ip to /n to injec	and pos +15°C. +15°C tion of	up to 2 the r Injecti	20°C nortai on Inject	tion oter
²⁾ For wet ³⁾ If the te ⁴⁾ If the te Table B4 reinforcing φ[um time t concre emperat .3: bars (r	ete the ture in ture in Insta	curing time the concrete the concrete llation tools Nominal dr diamete do [mm 10 ²⁾	ill bit	e inject e doub eelow 1 eds 30 frilling Dri Diam cuttin d _{cut} ≤ 1	tion to bled 0°C th °C the and lling a leter o g edge [mm] 0,50	ne cart e cartri cleani nd clea f S	ridge I dge ha ing th aning Gteel bi diame d₀ [mi 11	nas to as to b e bore rush ter	be wa e coole hole Diam cle no: [r	rmed u ed dow e and neter o aning zzle ³⁾	ip to /n to injec	and pos +15°C. +15°C tion of tameter extension tube	up to 2 the r Injecti	20°C mortai on Inject adap	tion ter ur]
²⁾ For wet ³⁾ If the te ⁴⁾ If the te Table B4 reinforcing φ[um time t concre emperat .3: I bars (r	ete the ture in ture in Insta	curing time the concrete the concrete llation tools Nominal dr diamete d ₀ [mm 10 ²⁾	ill bit	e inject e dout pelow 1 eds 30 frilling Dri Diam cuttin d_{cut} ≤ 1	tion to oled 0°C th °C the and ling a leter o g edge [mm] 0,50 2,50	ne cart e cartri cleani nd clea f S	ridge h dge ha ing th aning teel bi diame d _b [mi 11 14	nas to as to b e bore rush ter	be wa e coole e hole Dian cle no: [r	rmed u ed dow e and neter o aning zzle ³⁾ nm]	ip to /n to injec	and pos +15°C. +15°C tion of tameter extension tube	up to 2 the r Injecti	20°C nortai on Inject adap [colo	tion ter ur]
²⁾ For wet ³⁾ If the te ⁴⁾ If the te Table B4 reinforcing φ[um time t concre emperat .3: bars (r	ete the ture in ture in Insta	curing time the concrete the concrete llation tools Nominal dr diamete do [mm 10 ²⁾ 12 12	ill bit	e inject e doub eelow 1 eds 30 Irilling Dri Diam cuttin d_{cut} ≤ 1 ≤ 1	tion to bled 0°C th °C the and lling a leter o g edge [mm] 0,50 2,50 2,50	ne cart e cartri cleani nd clea f S	rridge h dge ha ing th aning teel bi diame d₀ [mi 11 14 14	nas to as to b e bore rush ter	be wa e coole e hole Dian cle no: [r	rmed u ed dow e and neter o aning zzle ³⁾ nm]	ip to /n to injec	and pos +15°C. +15°C tion of tameter extension tube	up to 2 the r Injecti	20°C mortai on Inject adap [colo	tion ter ur]
²⁾ For wet ³⁾ If the te ⁴⁾ If the te Table B4 reinforcing \$ \$ \$ 1	um time t concre emperat .3: bars (r [mm] 8 ¹⁾	ete the ture in ture in Insta	curing time the concrete the concrete llation tools Nominal dr diamete do [mm 10 ²⁾ 12 12 12	ill bit	e inject be doub below 1 eds 30 frilling Diam cuttin d_{cut} ≤ 1 ≤ 1 ≤ 1	tion to bled 0°C the C the and lling a heter o g edge [mm] 0,50 2,50 2,50 4,50	ne cart e cartri cleani nd clea f S	rridge h dge ha ing th steel br diame db [mi 11 14 14 14 16	nas to as to b e bore rush ter	be wa e coole e hole Dian cle no: [r	rmed u ed dow e and neter o aning zzle ³⁾ nm]	ip to /n to injec	and pos +15°C. +15°C tion of ameter extensio tube [mm]	up to 2 the r Injecti	20°C nortai on Inject adap [colo	tion oter our]
²⁾ For wet ³⁾ If the te ⁴⁾ If the te Table B4 reinforcing \$ \$ \$ 1	um time t concre emperat .3: bars (r [mm] 8 ¹⁾	ete the ture in ture in Insta	curing time the concrete the concrete llation tools Nominal dr diamete do [mm 10 ²⁾ 12 12	ill bit	e inject be doub below 1 eds 30 frilling Diam cuttin d_{cut} ≤ 1 ≤ 1 ≤ 1 ≤ 1	tion to bled 0°C the °C the and lling a leter o g edge [mm] 0,50 2,50 2,50 4,50 4,50	ne cart e cartri cleani nd clea f S	rridge h dge ha ing th aning teel bi diame d₀ [mi 11 14 14	nas to as to b e bore rush ter	be wa e coole e hole Diam cle no: [r	rmed u ed dow e and neter o aning zzle ³⁾ nm]	ip to /n to injec	and pos +15°C. +15°C tion of ameter extensio tube [mm]	up to 2 the r Injecti	20°C mortai on Inject adap [colo natu	tion oter our] ire e
²⁾ For wet ³⁾ If the te ⁴⁾ If the te Table B4 reinforcing <u>\$</u> <u>\$</u> 1	um time t concre emperat .3: bars (r [mm] 8 ¹⁾	ete the ture in ture in Insta	curing time the concrete the concrete llation tools Nominal dr diamete d ₀ [mm 10 ²⁾ 12 12 12 12 14 14 16 18	ill bit	e inject be doub below 1 eds 30 frilling Dri Diam cuttin d_{cut} ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1	tion to bled 0°C the C the and lling a heter o g edge [mm] 0,50 2,50 2,50 4,50	ne cart e cartri cleani nd clea f S	ridge I dge ha ing th aning bteel bi diame d₀ [mi d₀ [mi 11 14 14 16 16	nas to as to b e bore rush ter	be wa e coole e hole Diam cle no: [r	rmed u ed dow e and neter o aning zzle ³⁾ nm] 	ip to /n to injec	and pos +15°C. +15°C tion of ameter extensio tube [mm]	up to 2 the r Injecti	20°C mortai on Inject adap [colo natu	tion oter our] ore e
²⁾ For wet ³⁾ If the te ⁴⁾ If the te Table B4 reinforcing \$ \$ \$ 1 1	um time t concre emperat .3: bars (r [mm] 8 ¹⁾ 10 ¹⁾ 12 ¹⁾ 14	ete the ture in ture in Insta	curing time the concrete the concrete llation tools Nominal dr diamete do [mm 10 ²⁾ 12 12 12 14 14 14 16 18 20	ill bit	e inject be dout below 1 eds 30 Irilling Dri Diam cuttin d_{cut} ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 2	tion to oled 0°C the °C the and ling a leter o g edge [mm] 0,50 2,50 2,50 4,50 4,50 6,50 8,50 0,55	ne cart e cartri cleani nd clea f S	ridge had dge had dge had dige had di	nas to as to b e bore rush ter	be wa e coole e hole Diam cle no: [r	rmed u ed dow e and neter o aning zzle ³⁾ nm] 11	ip to /n to injec	and pos +15°C. +15°C tion of ameter extensio tube [mm]	up to 2 the r Injecti	20°C mortai on Inject adap [colo natu blu	tion ter ur] re e
²⁾ For wet ³⁾ If the te ⁴⁾ If the te Table B4 reinforcing \$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$\$ \$\$\$\$\$\$\$\$\$\$	um time t concre emperat .3: bars (r [mm] 8 ¹⁾ 10 ¹⁾ 12 ¹⁾ 14 16 20	ete the ture in ture in Insta	curing time the concrete the concrete llation tools Nominal dr diamete do [mm 10 ²⁾ 12 12 12 12 14 14 14 16 18 20 25	ill bit	e inject e dout pelow 1 eds 30 Irilling Dri Diam cuttin d_{cut} ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 2 ≤ 2	tion to oled 0°C the °C the and ling a leter o g edge [mm] 0,50 2,50 2,50 4,50 4,50 4,50 6,50 8,50 0,55 5,55	ne cart e cartri cleani nd clea f S	rridge had dge had dge had dge had dge had ding the diame dbe for the diame dbe diame	nas to as to b e bore rush ter	be wa e coole e hole Diam cle no: [r	rmed u ed dow e and neter o aning zzle ³⁾ nm] 	ip to /n to injec	and pos +15°C. +15°C tion of ameter extensio tube [mm]	up to 2 the r Injecti	20°C mortai on Inject adap [colo natu blue rec yellc	tion ter ur] re e d ow
²⁾ For wet ³⁾ If the te ⁴⁾ If the te Table B4 reinforcing \$	um time t concre emperat .3: bars (r [mm] 8 ¹⁾ 10 ¹⁾ 12 ¹⁾ 14	ete the ture in ture in Insta	curing time the concrete the concrete llation tools Nominal dr diamete d_0 [mm $10^{2)}$ 12 12 12 12 12 12 12 12	ill bit	e inject be dout below 1 eds 30 Irilling Diam cuttin d_{cut} ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 2 ≤ 2 ≤ 3	tion to bled 0°C the and lling a leter o g edge [mm] 0,50 2,50 2,50 4,50 4,50 6,50 8,50 5,55 0,55	ne cart e cartri cleani nd clea f S	rridge hadde had dige had di	nas to as to b e bore rush ter	be wa e coole e hole Diam cle no: [r	rmed u ed dow e and neter o aning zzle ³⁾ nm] 11	ip to /n to injec	and pos +15°C. +15°C tion of ameter extensio tube [mm]	up to 2 the r Injecti	20°C mortai on Inject adap [colo [colo natu blu gree blac gree	tion ter ur] re e d w en ck
²⁾ For wet ³⁾ If the te ⁴⁾ If the te Table B4 reinforcing \$ \$ 1 1 1 2 22	um time t concre emperat 1.3: bars (r [mm] 8 ¹⁾ 10 ¹⁾ 12 ¹⁾ 12 ¹⁾ 14 16 20 2/24	ete the ture in ture in Insta	curing time the concrete the concrete llation tools Nominal dr diamete d_0 [mm $10^{2)}$ 12 12 12 12 12 12 12 12	ill bit	e inject e doub pelow 1 eds 30 frilling Diam cuttin d_{cut} ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 2 ≤ 2 ≤ 3 ≤ 3	tion to bled 0°C the °C the and lling a leter o g edge [mm] 0,50 2,50 2,50 4,50 4,50 6,50 8,50 0,55 0,55 0,55	ne cart e cartri cleani nd clea f S	rridge had dge had dge had dge had diame diame $\frac{d_b \text{ [min]}}{11}$ $\frac{14}{14}$ $\frac{16}{16}$ $\frac{16}{20}$ $\frac{20}{27}$ $\frac{32}{32}$ $\frac{32}{32}$	nas to as to b e bore rush ter	be wa e coole e hole Diam cle no: [r	rmed u ed dow e and neter o aning zzle ³⁾ nm] 11	ip to /n to injec	and pos +15°C. +15°C tion of ameter extensio tube [mm] 9	up to 2 the r Injecti of on	20°C mortai on Inject adap [colo natu bluu rec yello gree blac gre	tion ter ur] e e d ow en ck
²⁾ For wet ³⁾ If the te ⁴⁾ If the te Table B4 reinforcing \$	um time t concre emperat .3: bars (r [mm] 8 ¹⁾ 10 ¹⁾ 12 ¹⁾ 14 16 20	ete the ture in ture in Insta	curing time the concrete the concrete llation tools Nominal dr diamete d_0 [mm $10^{2)}$ 12 12 12 12 12 12 12 12	ill bit	e inject e dout pelow 1 eds 30 frilling Diam cuttin d_{cut} ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 2 ≤ 3 ≤ 3 ≤ 3	tion to bled 0°C the and lling a leter o g edge [mm] 0,50 2,50 2,50 4,50 4,50 6,50 8,50 5,55 0,55	ne cart e cartri cleani nd clea f S	rridge hadde had dige had di	nas to as to b e bore rush ter	be wa e coole e hole Diam cle no: [r	rmed u ed dow e and neter o aning zzle ³⁾ nm] 11	ip to /n to injec	and pos +15°C. +15°C tion of ameter extensio tube [mm]	up to 2 the r Injecti of on	20°C mortai on Inject adap [colo [colo natu blu gree blac gree	tion ter ur] re e d bw en ck y y y

¹⁾ Both drill bit diameters can be used

²⁾ Only hammer drilling with standard drill bit

40²⁾

45²⁾

55²⁾

³⁾ Cleaning nozzle and extension is only necessary if bore hole depth is greater than the length of compressedair cleaning tool

≤ 40,70

≤ 45,70

≤ 55,70

42

47

58

38

fischer injection system FIS EM Plus

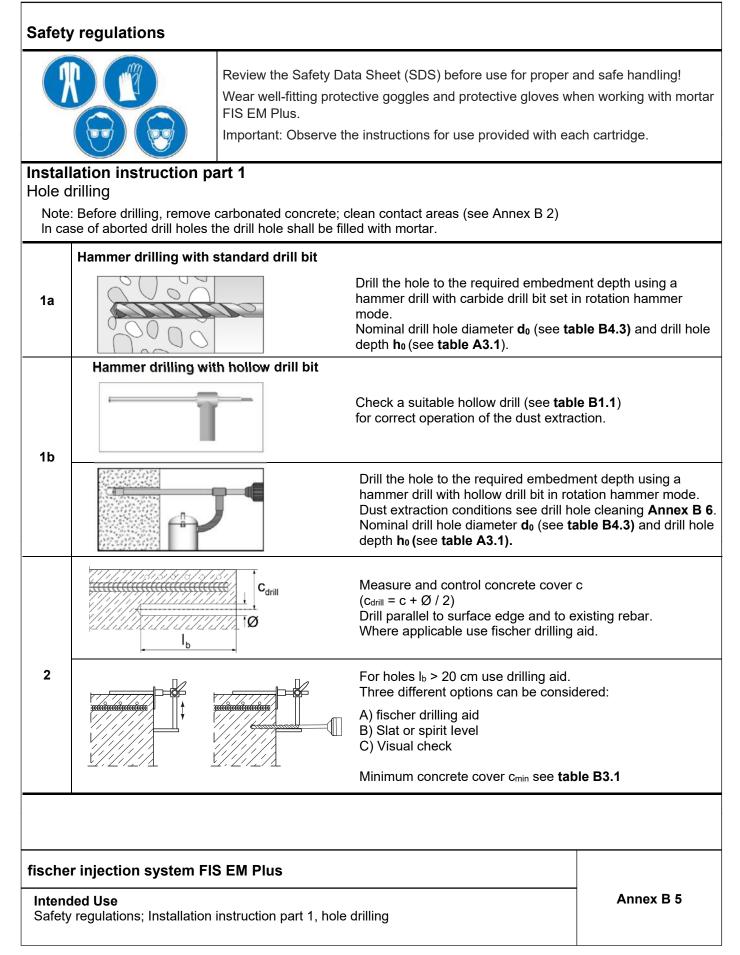
Intended Use

30 / 32 / 34

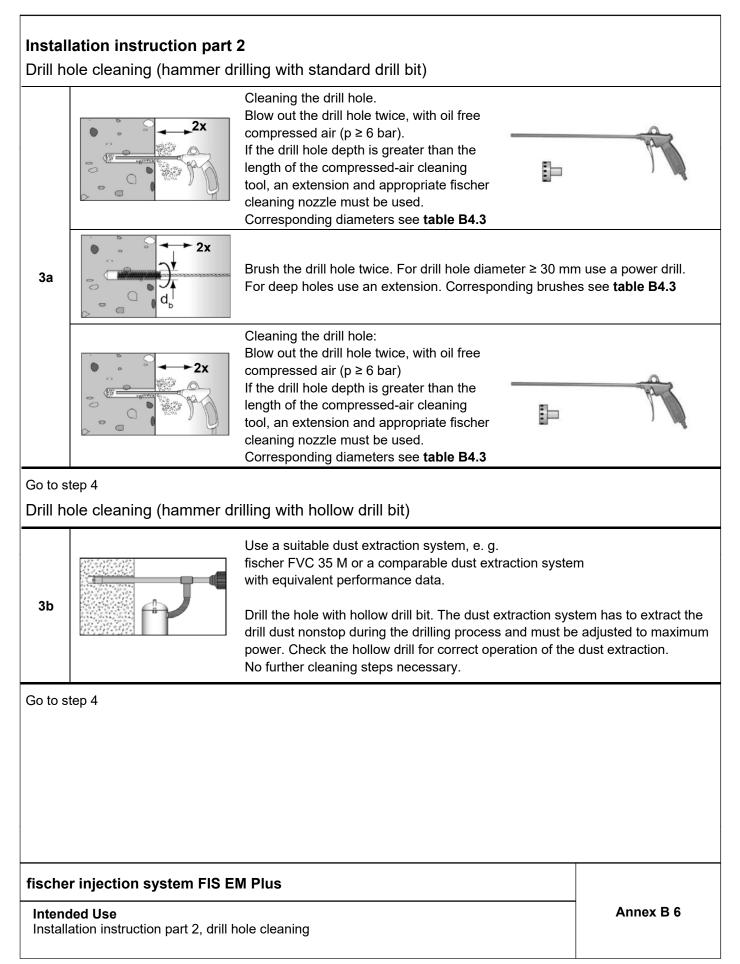
<u>36</u> 40

Working times and curing times;

Installation tools for drilling and cleaning the bore hole and injection of the mortar

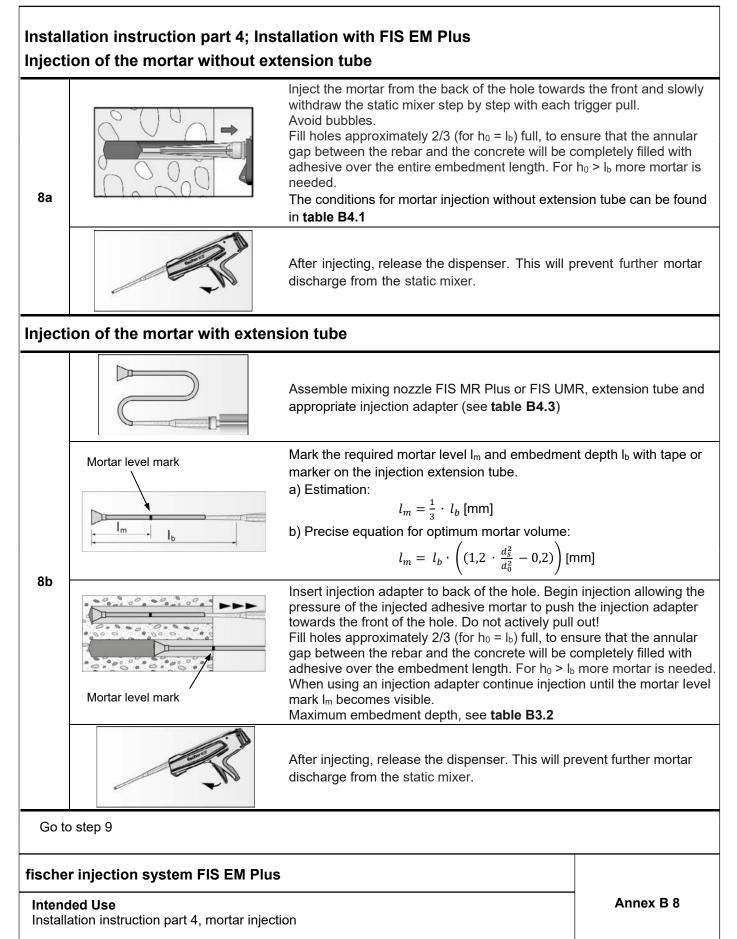

Annex B 4

red


yellow

nature

Г


4		Before use, make asure that the rebar is dry and free of oil or other residue. Mark the embedment depth I_b (e.g. with tape) Insert rebar in borehole, to verify drill hole depth and setting depth I_b
) = ← ==	Twist off the sealing cap
5		Twist on the static mixer (the spiral in the static mixer must be clearly visible).
6	Tischer 157	Place the cartridge into a suitable dispenser.
7	X	Press out approximately 10 cm of mortar until the resin is permanently grey in colour. Mortar which is not grey in colour will not cure and must be disposed.

fischer injection system FIS EM Plus

Intended Use Installation instruction part 3, reinforcing bars (rebar) and cartridge preparation Annex B 7

Electronic copy of the ETA by DIBt: ETA-22/0001

Installation instruction part 5; Installation with FIS EM Plus Insert rebar Insert the rebar slowly twisted into the borehole until the embedment mark is reached. 9 Recommendation: Rotation back and forth of the reinforcement bar makes pushing easy After installing the rebar the annular gap must be completely filled with mortar. Proper installation 10 • Desired embedment depth is reached lb: embedment mark at concrete surface . Excess mortar flows out of the borehole after the rebar have been fully inserted up to the embedment mark. For overhead installation, support the rebar and secure it from falling till mortar 11 started to harden, e.g. using wedges. Observe the working time "twork" (see table B4.2), which varies according to temperature of base material. Minor adjustments to the rebar position may be performed during the working time 12 Full load may be applied only after the curing time "tcure" has elapsed (see table B4.2)

fischer injection system FIS EM Plus

Intended Use Installation instruction part 5, insert rebar

Annex B 9

			All sizes								
Characteristic resistance un	nder tension	loadin	ing								
Installation factor	γinst	[-]	See annex C 2 to C 3								
Factors for the compressive	e strength of	concr	crete > C20/25								
	C25/30	C	1,02								
Increasing factor Ψ_c for	C30/3	7	1,04								
cracked or uncracked	C35/4	5 ,1	1,06								
concrete	C40/50	[-]	1,07								
$\tau_{Rk,C(X/Y)} = \psi_{c} \cdot \tau_{Rk(C20/25)}$	C45/5	5	1,08								
	C50/60	C	1,09								
Concrete cone failure											
Uncracked concrete	k _{ucr,N}	r 1	11,0								
Cracked concrete	k _{cr,N}	[-]	7,7								
Edge distance	Ccr,N		1,5 · I⊳								
Spacing	Scr,N	[mm]	n] 3 · I _b								
opaoling											
	on loading										
Factors for sustained tensic Factor ¹⁾ No performance assessed Table C1.2: Essentia hammer	ψ ⁰ sus al characte drilled hole	es; un	ics under tension loading for reinforcing bars in ncracked or cracked concrete;								
Factors for sustained tension Factor ¹⁾ No performance assessed Table C1.2: Essentia hammer working	ψ ⁰ sus al characte drilled hole life 50 and	eristic es; un 100 y	ics under tension loading for reinforcing bars in ncracked or cracked concrete; years								
Factors for sustained tension Factor ¹⁾ No performance assessed Table C1.2: Essentia hammer working Nominal diameter of the bar	ψ ⁰ sus al characte drilled hole life 50 and	eristic es; un 100 y φ	ics under tension loading for reinforcing bars in ncracked or cracked concrete; years 8 10 12 14 16 18 20 22 24 25 26 28 30 32 34 36 4								
Factors for sustained tension Factor ¹⁾ No performance assessed Table C1.2: Essentia hammer working Nominal diameter of the bar Bond-splitting failure for wo	ψ ⁰ sus al characte drilled hole life 50 and	eristic es; un 100 y Φ 50 and	ics under tension loading for reinforcing bars in ncracked or cracked concrete; years 8 10 12 14 16 18 20 22 24 25 26 28 30 32 34 36 4 nd 100 years								
Factors for sustained tension Factor ¹⁾ No performance assessed Table C1.2: Essentia hammer working Nominal diameter of the bar Bond-splitting failure for wo Calculation diameter	ψ ⁰ sus al characte drilled hole life 50 and orking life of d	eristic es; un 100 y Φ 50 and [mm]	ics under tension loading for reinforcing bars in ncracked or cracked concrete; years 8 10 12 14 16 18 20 22 24 25 26 28 30 32 34 36 44 nd 100 years years 10 12 14 16 18 20 22 24 25 26 28 30 32 34 36 44 nd 100 years years 10 12 14 16 18 20 22 24 25 26 28 30 32 34 36 44								
Factors for sustained tension Factor ¹⁾ No performance assessed Table C1.2: Essentiat hammer working Nominal diameter of the bar Bond-splitting failure for wo Calculation diameter Hammer-drilling with standard	ψ ⁰ sus al characte drilled hole life 50 and	eristic es; un 100 y Φ 50 and [mm]	ics under tension loading for reinforcing bars in ncracked or cracked concrete; years 8 10 12 14 16 18 20 22 24 25 26 28 30 32 34 36 44 nd 100 years 12 14 16 18 20 22 24 25 26 28 30 32 34 36 44 nd 100 years 41 16 18 20 22 24 25 26 28 30 32 34 36 44 nd 100 years 41 16 18 20 22 24 25 26 28 30 32 34 36 44 drill bit for 50 and 100 years 44 45 45 46 <t< td=""></t<>								
Factors for sustained tension Factor ¹⁾ No performance assessed Table C1.2: Essentia hammer working Nominal diameter of the bar Bond-splitting failure for work Calculation diameter Hammer-drilling with standard Product basic factor	ψ ⁰ sus al characte drilled hole life 50 and orking life of d d drill bit or ho Ak	eristic es; un 100 y Φ 50 and [mm]	ics under tension loading for reinforcing bars in ncracked or cracked concrete; years 8 10 12 14 16 18 20 22 24 25 26 28 30 32 34 36 44 nd 100 years years 10 12 14 16 18 20 22 24 25 26 28 30 32 34 36 44 nd 100 years years 10 12 14 16 18 20 22 24 25 26 28 30 32 34 36 44								
Factors for sustained tension Factor ¹⁾ No performance assessed Table C1.2: Essentia hammer working Nominal diameter of the bar Bond-splitting failure for word Calculation diameter Hammer-drilling with standard Product basic factor Exponent for influence of cond compressive strength	ψ ⁰ sus al characte drilled hole life 50 and orking life of d d drill bit or ho A _k crete sp1	eristic es; un 100 y Φ 50 and [mm]	ics under tension loading for reinforcing bars in ncracked or cracked concrete; years 8 10 12 14 16 18 20 22 24 25 26 28 30 32 34 36 44 nd 100 years 12 14 16 18 20 22 24 25 26 28 30 32 34 36 44 nd 100 years 41 16 18 20 22 24 25 26 28 30 32 34 36 44 nd 100 years 41 16 18 20 22 24 25 26 28 30 32 34 36 44 drill bit for 50 and 100 years 44 45 45 46 <t< td=""></t<>								
Factors for sustained tension Factor Factor ¹⁾ No performance assessed Table C1.2: Essentia hammer working Nominal diameter of the bar Bond-splitting failure for work Calculation diameter Hammer-drilling with standard Product basic factor Exponent for influence of cond compressive strength Exponent for influence of rebar	ψ ⁰ sus al characte drilled hole life 50 and orking life of d d drill bit or ho A _k crete sp1	eristic es; un 100 y φ 50 and [mm] Ilow dr	ics under tension loading for reinforcing bars in ncracked or cracked concrete; years 8 10 12 14 16 18 20 22 24 25 26 28 30 32 34 36 4 nd 100 years								
Factors for sustained tension Factor ¹⁾ No performance assessed Table C1.2: Essentia hammer	ψ ⁰ sus al characte drilled hole life 50 and orking life of d d drill bit or ho Ak crete sp1 ar sp2	eristic es; un 100 y Φ 50 and [mm]	ics under tension loading for reinforcing bars in ncracked or cracked concrete; years 8 10 12 14 16 18 20 22 24 25 26 28 30 32 34 36 44 nd 100 years 12 14 16 18 20 22 24 25 26 28 30 32 34 36 44 nd 100 years 4								
Factors for sustained tensic Factor ¹⁾ No performance assessed Table C1.2: Essentia hammer working Nominal diameter of the bar Bond-splitting failure for working Calculation diameter Hammer-drilling with standard Product basic factor Exponent for influence of cond compressive strength Exponent for influence of rebar diameter φ Exponent for influence of cond	ψ ⁰ sus al characte drilled hole life 50 and orking life of d d drill bit or ho Ak crete sp1 ar sp2 crete sp3	eristic es; un 100 y φ 50 and [mm] Ilow dr	Image: state in the state								

Characteristic resistance under tension loading for reinforcing bars hammer drilled holes; uncracked or cracked concrete; working life 50 and 100 years

Table C	2.1 Characte hammer d														-					
Nominal of	diameter of the bar		ф	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Combine	d pullout and concre	ete cone	failure													<u>.</u>				
Calculatio	n diameter	d	[mm]	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Uncracke	d concrete																			
Characteristic bond resistance in uncracked concrete C20/25																				
Hammer-o	drilling with standard o	drill bit or	hollow dr	ill bi	t (dr	y or	wet	con	crete	e)										
Tem-	l: 35 °C / 60 °C			16	15	15	14	14	13	13	13	12	12	12	12	12	12	11	11	11
perature range	ll: 50 °C / 72 °C	$ au_{Rk,ucr}$	[N/mm ²]	15	14	14	13	13	12	12	12	12	11	11	11	11	11	11	10	10
Hammer-o	drilling with standard o	drill bit or	hollow dr	ill bi	t (wa	ater	fillec	l hol	<u>e)</u>											
Tem-	l: 35 °C / 60 °C			16	16	14	13	12	12	11	11	10	10	10	10	9	9	9	8	8
perature range	II: 50 °C / 72 °C	$ au_{Rk,ucr}$	[N/mm ²]	15	14	13	12	12	11	11	10	10	9	9	9	9	8	8	8	8
Installatio	on factors																			
Dry or wet	concrete	<u>.</u>	r 1									1,0								
Water fille	d hole	γinst	[-]									1,4								
Influence	of cracked concrete	e on con	nbined pu	llou	it an	d co	onc	rete	con	e fa	ilur	e fo	r wo	orkir	ng li	fe o	f 50	yea	rs	
Factor for concrete v	influence of cracked	Ω_{cr}	[-]	0,91	0,91	0,91	0,91	0,91	0,91	0,92	0,92	0,92	0,92	0,92	0,92	0,92	0,93	0,93	0,93	0,93
Perform	njection system Fl ances eristic resistance unde			or r	einfo	orcin	g ba	ars ir	n ha	mme	er dı	illed				А	nne	x C	2	
	ncracked or cracked o																			

Table C3.1:Characteristic resistance under tension loading for reinforcing bars in hammer drilled holes; uncracked or cracked concrete; working life 100 years																				
Nominal diameter of the bar			φ	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Combined pullout and concrete cone failure																				
Calculation diameter d		[mm]	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40	
Uncracked concrete																				
Characteristic bond resistance in uncracked concrete C20/25																				
Hammer-drilling with standard drill bit or hollow drill bit (dry or wet concrete)																				
Tem- I: 35	5 °C / 60 °C	$ au_{Rk,ucr}$	[N/mm ²]	16	15	15	14	14	13	13	13	12	12	12	12	12	12	11	11	11
perature range II: 50	0 °C / 72 °C			15	14	14	13	13	12	12	12	12	11	11	11	11	11	11	10	10
Installation factors																				
Dry or wet concrete		γinst	[-]	1,0																
Tem- I: 38 perature	5 °C / 60 °C	- α _{100 years}	[-]	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75
11	0 °C / 72 °C			0,55	0,60	0,60	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65
Influence of cracked concrete on combined pullout and concrete cone failure for working life of 100 years																				
Factor for influence of cracked Ω_{cr}		[-]	0,91	0,91	0,91	0,91	0,91	0,91	0,92	0,92	0,92	0,92	0,92	0,92	0,92	0,93	0,93	0,93	0,93	
¹⁾ Calculation	of characteri	stic bond	d resistan	ice i	n u	ncra	cke	d co	oncr	rete	TRK,	100, u	cr:							

 $\tau_{\text{Rk,100, ucr}} = \alpha_{100 \text{ years}} \cdot \tau_{\text{Rk,ucr}}$

Performances

Characteristic resistance under tension loading for reinforcing bars in hammer drilled holes; uncracked or cracked concrete; working life 100 years

Annex C 3